The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress.

نویسندگان

  • Daisuke Tsuruta
  • Jonathan C R Jones
چکیده

Recently, we reported that vimentin-type intermediate filaments, in addition to microfilaments, associate with alphavbeta3 integrin-positive focal contacts in endothelial cells. To gain insight into intermediate filament-focal contact interaction, we induced expression of yellow fluorescent protein (YFP)-integrin beta3 and cyan fluorescent protein (CFP)-vimentin protein in endothelial cells. At least 50% of the YFP-beta3 integrin-labeled focal contacts associated with CFP-labeled vimentin intermediate filaments in live cells. Moreover, focal contacts and intermediate filaments moved in concert in the plane of the membrane and assembling focal contacts were sites of vimentin filament assembly. When endothelial cells were subjected to flow, large focal contacts assembled and associated with thick vimentin bundles. These large focal contacts showed minimal dynamic activity. Cells in which vimentin expression had been inhibited by RNA interference assembled smaller than normal focal contacts. More dramatically, such cells showed decreased adhesion to the substratum. These data provide evidence that the vimentin cytoskeleton regulates focal contact size and helps stabilize cell-matrix adhesions in endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the dynamics of shear stress-induced structural changes in endothelial cells.

Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM o...

متن کامل

O 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions

KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...

متن کامل

Lights, camera, actin! The cytoskeleton takes center stage in mechanotransduction. Focus on "Mapping the dynamics of shear stress-induced structural changes in endothelial cells.".

ATHEROSCLEROSIS is characterized by chronic functional changes to the endothelial cells lining the arterial wall, including injury. Whereas significant work has been done to understand the role of atherosclerosis in cardiovascular disease, the process for initiation and development of atherosclerotic plaques remains unclear. Factors including increased plasma lipids, hypertension, high glucose,...

متن کامل

Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells

Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kin...

متن کامل

Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase.

Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2003